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DIFFERENCING AS A TEST OF SPECIFICATION*

By CHARLES I. PLosSSER, G. WILLIAM SCHWERT
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1. INTRODUCTION

One of the most difficult problems in applied econometrics is to determine when
an econometric model is correctly specified. Although there are many types of
misspecification, this paper is concerned with specification errors that lead to biased
or inconsistent estimators of the regression coefficients. Specification errors of
this type include omitted variables, measurement error, simultaneous equation
problems or any type of misspecification that leads to a dependence between the
error term and the regressors.

In the context of the linear time series regression model, Plosser and Schwert
[1977, 1978] suggest that a comparison of the least squares estimators from a
presumably correctly specified regression equation with the estimators from the
differenced form of the same model can provide important insights into the
validity of the linear regression specification. If the model is correctly specified,
the estimators from the differenced and undifferenced models have the same
probability limit, so the results should corroborate one another. On the other
hand, if there are measurement errors, omitted variables, or other types of mis-
specification, the differences regression should lead to different results, indicating
that corrective measures are in order.

The purpose of this paper is to formalize the arguments presented in Plosser
and Schwert by constructing a test of the hypothesis that a time series regression
equation is well-specified. The test is based on a comparison of the least squares
estimators obtained from the differenced and undifferenced regressions.. The
resulting specification test is similar to those proposed by Hausman [1978].

Section 2 develops a statistic to test whether the undifferenced and differenced
regressions are equal. A rejection of this test would indicate misspecification.
In Section 3, we investigate the asymptotic local power of the test. Section 4
summarizes Monte Carlo experiments that investigate the size and power of our
test in finite samples under some plausible types of misspecification. In addition,
we compare the power of our test with the power of an instrumental variables
procedure and test proposed by Wu [1973], the frequently used Durbin-Watson

* Manuscript received February 4, 1981; revised March 12, 1982.

' We have benefited from the comments of Eugene Fama, Martin Geisel, Michael Gibbons,
Clive Granger, Charles Nelson, Adrian Pagan, Christopher Sims, and from anonymous referees.
We also received valuable comments from workshop participants at the University of Chicago,
Northwestern University, and the N.B.E.R./N.S.F. Seminar on Time Series. Schwert’s partici-
pation is supported by the National Science Foundation.

535



536 C. 1 PLOSSER, G. W. SCHWERT AND H. WHITE

statistic, and a specification test due to Ramsey [1969] and Ramsey and Schmidt
[1976]. The concluding section summarizes our test procedures and the findings
of the power investigation.

2. A DIFFERENCING TEST FOR MISSPECIFICATION

The stochastic regression model we consider is discussed by Goldberger [1964,
ch. 6]. Assume
Al. The model can be written in mean-deviation form as

(l) Ve =Xt ﬂO + & t= la"'aTy

where {X,} is a weakly stationary sequence of random 1 x k row vectors, such that
plim T7! ¥ T, X;X,=Myy=E(X,X,) is finite and nonsingular; {¢} is a pure
white noise sequence, such that E(g,)=0, E(¢?)=03, 0<a?<0; ¢ is independent
of X_ for all 7; and B, is an unknown finite k x 1 vector of constants.

When the model is correctly specified, the least squares estimator fr=
(X'X)"'X'y, is a consistent estimator for f,. Given Al and assumption A2 of
the Appendix (which imposes mild conditions on the moments of the regressor
cross-products and on the convergence of the regressor covariances given the
distant past to the unconditional covariance), it is straightforward to show that
JT(Br—Bo)A N, 63M53}). However, when the regression equation (1) is
misspecified, in the sense that there are omitted variables, simultaneous equation
problems, etc., there is a dependence between ¢ and X,, and the least squares
estimator is generally inconsistent.

In order to test for misspecification in (1), consider the differenced regression

)] ' Ve = X.Bo + &, t=1.,T

where the dot notation indicates first differencing (e.g., y, =y, —y,-;). For
convenience, set y,=y,, Xo=X,, and gy=¢,. Defining X as the Tx k matrix
with rows X, and y as the T'x 1 vector with elements y,, the least squares estimator
for (2) is Br=(X"X)"1X’y. When the model is correctly specified, § is also a
consistent (although inefficient) estimator for B,, provided that X, contains no
lagged dependent variables. Otherwise, By is inconsistent. The inefficiency of
the estimator arises from the fact that differencing induces a first-order moving
average process in the disturbances of (2).2

Thus, the difference’ f;— By provides a misspecification indicator similar to
those proposed by Hausman [1978]. When the model is correctly specified,
Br— By will be close to zero; however, f— B r will generally diverge if the model is
misspecified. Based on this fact, we derive a statistic that uses the difference
between B and B to test for the presence of misspecification.

The statistic is based on the joint asymptotic normality of f, and B3 If

* See Plosser and Schwert [1977] for a discussion of this moving average process and its effects
on estimates of §,.
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JT(B;— B7) is asymptotically normal with mean zero and nonsingular covariance
matrix V' (which occurs under general conditions when the model is correctly speci-
fied), it follows that

3 4=TPBr~By V-1Br-B Ak,

where P is a consistent estimator of V. Formally, we have

THeOREM 1. If X, contains no lagged endogenous variables and A1, A2, and
A6 hold, then A;‘,xf? where

P =8}[(X'X/T)- (X' RIT)X'X|T)* — (X' X|T)~1]
and 8% =(y—XBy) (y—XBp)/T, provided plim ¥ is nonsingular,

The double dot notation indicates second differencing (X,= X,~ X,_,). Assump-
tions A2 and A6 are also given in the Appendix, along with all mathematical proofs.
The particularly simple form for ¥ (which is just the difference of the estimated
covariance matrices for B and B,)* arises from the fact that B, is asymptotically
efficient relative to §.5 _

Although Theorem 1 is sufficient for many applied problems, often econo-
metricians are faced with more complex models that involve lagged dependent
variables, or autocorrelated errors. Hence, it is important to modify the differenc-
ing test to allow for such complications.

The only difficulty presented by lagged dependent variables in X, is that f,
becomes inconsistent even when (1) is correctly specified.® To remedy this
problem, consider the instrumental variables estimator f,=(Z'X)~1Z'p, where
Z is a Tx k matrix of instruments with properties fully specified by assumptions
A3-A5 of the Appendix.” A natural choice for Z is a linear combination of

3 It should be noted that Hausman’s [1978] Lemma 2.1 implicitly requires the joint asymptotic
normality of 87 and Br. Hence, it will not generally suffice to consider the asymptotic normality
of fr and br separately, and then apply Hausman’s Lemma. In the proof of our Theorem 2, it
becomes evident that although asymptotic normality can be proven separately for 3, and Be using
assumptions Al-A4, an additional assumption, AS, is required for joint asymptotic normality.

* Note that o3 (X' X/T) (X' X/TXX'X/T)™" is just the estimated covariance matrix for
Br taking into account that the disturbances follow a first-order moving average process with a
unit root.

* It is also worth noting that there is an exact F-test that can be used instead of 4 when the
errors are normal and the regressors are non-stochastic or independent of ¢.

¢ In the lagged dependent variable case some of the regressors are correlated with lagged errors
so assumption Al is not satisfied. A similar problem occurs in rational expectations predictive
equations when the regressors (measures of expectations) will generally be correlated with lagged
errors.

7 Alternately, Adrian Pagan has pointed out to us that the inconsistency in ,§r can be estimated
and removed. A consistent estimator is fr +(X’'X)'S, where § is a k x 1 vector with To2 in

the position corresponding to the lagged dependent variable and zeros elsewhere. This is
(Continued on next page)
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current and lagged exogenous variables. For this more general case we have the
following:

THEOREM 2. Given A1-AS, 4 Ay, where
P=83[(ZX|T)"(Z'ZITYX'ZIT) - (X'X|T)""]

and 8% =(y—XB;) (y—XBy)/T, provided plim P is nonsingular.
Note that Theorem 1 can be viewed as a simple corollary of Theorem 2 where
Z=X. .

Next we allow for autocorrelated errors by considering more general models
of the form .

@ w=Xtho + ¢,

where ¢¥ is an ARMA (p, q) process ¢(B)e*=0(B)e,, and B is the backshift
operator. If ¢(B) and 6(B) have roots outside the unit circle, the model can always -
be written y,=X,f,+¢&, where y,=¢(B)6(B) 'y¥, and X,=¢(B)d(B)"1X*.
Obviously, no difficulty arises in satisfying Al if ¢(B) and 6(B) are known, so no
generality is lost in this case by supposing ¢, to be white noise. In practice, how-
ever, one has at most a knowledge of p and g, so that the parameters of ¢(B) and
O(B).must be estimated. Nevertheless, results of Pierce [1972] for a similar model
strongly suggest that this estimation may be carried out without affecting the
covariance matrices embedded in the statistics proposed here. -This arises from
the fact that the least squares estimators of the parameters of ¢(B) and 6(B) are
independent of the estimators of f, in large samples.

Thus, for a fairly general class of models, the differencing test can be imple-
mented as follows:

(1) Estimate f, along with any ARMA parameters for the error process by
least squares. If necessary, transform the model so that the errors are white
noise, and retain the covariance matrix estimator for §,, 8%(X'X)™1.

(2) Difference the transformed model and compute S and the remaining
terms of the appropriate form for P based on the cross-products matrix of the
instrumental variables and the first differences of the regressors, (Z’'X/T), and the
cross-products matrix of the first difference of the instrumental variables, (2'Z/T).
When there are no lagged dependent variables, this only requires the com-
putation of the cross-products matrices for the first differences (X’X/T) and the
second differences (X' X/T) of the regressors.

(Continued)

asymptotically equivalent to an instrumental variables procedure with Z=X+ 0, where U has
the estimated residual from the undifferenced regression in the column corresponding to the
lagged dependent variable and zeros elsewhere. The presence of estimated rather than true

residuals may affect the form of V in Theorem 2 below.
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(3) Finally, compute 4 and compare it to the critical value for a x? statistic
at the desired significance level. If 4 exceeds this value, reject the null hypothesis
that the model is correctly specified.

3. ASYMPTOTIC LOCAL POWER OF THE DIFFERENCING TEST .

For large samples, the local power of the differencing test follows immediately
from Hausman's [1978] Theorem 2.2. Applied to the present case, Hausman’s
result states for a sequence of local alternatives such that plim \/7(f;—B;)=5,
where d is a finite non-zero k x 1 vector, the 4 statistic is distributed asymptotically
as noncentral x# , with noncentrality parameter

(5) v = & (plim P-1)s.

It is trivial to show that the differencing test is consistent (i.e., has power one as-
ymptotically) against any fixed alternative such that plim (87 —f;)#0 and plim
P is nonsingular. The local asymptotic power is

n(v) = P[4 > ¢4 ~ x}..],

where ,x? is the critical value for a test of size @ under the y? distribution. The
power function n(v) is increasing in v, so we shall use v to index the local power
of a test. To gain more understanding, we consider several special cases.

A common source of misspecification occurs when elements of the regressor
matrix contain measurement error. For example, suppose the true model is

© e = ﬂozt + Uy,
where for simplicity z, and B, are now scalars. The model estimated is
@) Ye = Box; + &,

where the regressor contains measurement error, x,=z,+v, so that g =u,— fy0,.
This is the textbook errors-in-variables model.

If we assume that z, is a first-order autoregressive process, AR(1), and v, is
uncorrelated with z,, u, and its own past values, and we consider the sequence of
local alternatives such that a,z,=a;§'2/v"—1f the expression (5) becomes

8) v = 2f3pta3¢/(aioi(1-p2).

where o= E(u?), E(u)=0, 62=E(z?), and p,=E(z,z,_,)/e2. The local power
of the test depends directly on 83 and p2 and inversely on g202.

Another common source of misspecification occurs when relevant variables,
which are correlated with the included variables, are omitted from the regression.
For example, let the true model be

(9) Ve = Boxr + Yoz, + Uy

where u is independent of x and z. The misspecified model is
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(10 Ve = ﬂoxt + &,

where & =u,+7y,z,.
If we consider the sequence of local alternatives Yo=v8//T. the expression
(5) becomes

(11 V= 29820(pueps — (e = 1) + P+ 1)]/2)203(1 = p2)

where x, is AR(1), p, = E(x,x,_,)/62, p,.(k)=corr (x,, z,.,), and the other notation
is as previously defined. The local power of the test is more complicated than
for the errors-in-variables model. It depends directly on 732, p,. and o2, inver-
sely on ¢Z, and in a complicated way on the cross-correlation structure of x, and
z,. ,
There are two other forms of misspecification that are of frequent concern in
practice. The first is usually referred to as simultaneous equation bias, which oc-
curs when one or more of the elements of X, is endogenous. Explicit represen-
tation of the noncentrality parameter in this case is extremely complex and requires
assumptions about the complete structural model. However, it can be shown that
the local power depends on the covariance structure among the disturbances in
the system, the relation among the elements of X, that are endogenous, and the
relevant excluded exogenous variables. Hence, the simultaneous equation prob-
lem can be thought of as a combination of the measurement error problem and
the omitted variable problem.

A second type of misspecification occurs when an incorrect functional form is
used. For example, one may estimate the linear model, y,=f,x,+¢, when, in
fact, the correct functional form is semilog, y,=y,In x,+u,. The linear specifi-
cation is a misspecified regression with an omitted variable, In x,. Consequently,
many types of functional form misspecification can be considered as a special case
of the omitted variable problem.

In this paper we focus on the differencing transformation or filter as a means of
investigating model misspecification. The power of the test arises because the
probability limit of the least squares estimators from the differenced and undif-
ferenced regressions generally differ. It is useful to recognize, however, that
there is nothing unique in the differencing filter in this context. Indeed, one could
choose any linear filter for the transformation, such as quasi-differencing (1~ 1B),
or higher order polynomials like (1—4,B—4,B2), and construct a similar test
statistic. Moreover, if one has a specific alternative hypothesis in mind, it would
be possible to design the “optimal’’ filter which would have the greatest power in
that situation.® For example, consider filters of the class (1—AB) in the measure-
ment error model of equations (6) and (7). The least squares estimator of the
quasi-differenced model is B (1) = (%'%)"'%'j, where X, =x,—Ax,_,, and y,=
Y:—4y,—;. The noncentrality parameter can be shown to be

v =2023034pi /(03025 + 12 — 142 + (13— Dp, — A%p2]),

* We are grateful to Clive Granger for suggesting this point.
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which is maximized for Ai=1 for all —t<p,<1. Hence, the differencing filter
is the optimal filter of this class for local alternatives for this errors-in-variables
model.

More generally, we have chosen to focus on the differencing filter for two
reasons: (1) changes of variables are convenient and easily implemented in
practice; and (2) in most applications the researcher has only a vague idea of the
type of model misspecification, so that the design of an ““optimal’’ filter is out of the
question.

4. SIMULATION EXPERIMENTS

Although the results in Sections 2 and 3 characterize the size and asymptotic
local power of the differencing test for large samples, further insight into the
operating characteristics of the test in situations likely to be encountered in practice
can be gained by means of Monte Carlo simulation. To provide some perspective
for these experiments, the instrumental variables specification test suggested by
Wu [1973], the RESET specification test suggested by Ramsey [1969] and
Ramsey and Schmidt [1976], and the Durbin-Watson test are also examined.

The Wu test compares the least squares estimators of the presumably correctly
specified time series regression in (1), By, with the instrumental variable estimator

(12) BY =(@Z'X)'Zy

where the instrumental variables are lagged values of the regressors, Z,=X,_,.
Wu’'s test statistic can be expressed as

(13 Wu = T- (B =By P-1(BY — B A 13,
where
V-1 = 82[(Z’X|TyNZ'ZITHX'Z|T) —(X'X|T)"']

and 62 =(y—XB7)(y— XB;)/T, provided that ¥ is nonsingular. Thus, the Wu
test and the differencing test are closely related.

The RESET test is based on the assumption that under the null hypothesis the
distribution of ¢, conditional on X, is normal (0, 62I) whereas under the alter-
native the distribution is normal (g, Q). The variant of the test used here is
discussed by Ramsey and Schmidt [1976]. The idea is that if u can be approxi-
mated by a linear combination of the columns of some observable matrix D, then
a test of specification can be based on the regression of y on X and D using the
usual F-test to test the hypothesis that the coefficients associated with D are zero.
Ramsey [1969] assumes that u can be expressed as a function of y8, and suggests
that powers of # = X3, are logical candidates for the columns of D. Following
this suggestion we choose D as a Tx 3 matrix whose columns are $2, 3, and
§* respectively. The RESET test statistic is then distributed as F(3, T—k—3).

The Durbin-Watson test statistic is sometimes used as a specification test.
For example, the presence of significant serial correlation in the residuals can
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be viewed as an indication of an omitted variable. The test is based on the sta-
tistic

(14) d= 2i=2(8—2 -2

where & is an element of ¢=y—Xf,. Of course, it should be noted that the
Durbin-Watson test is not designed to detect specification errors that cause a
dependence between the error term and the regressors. Nevertheless, it is
commonly used as a crude test of specification.

4.1. Small Sample Distribution of Test Statistics. The RESET test is an
exact F-test and the finite sample (lower bound) critical value of the Durbin-
Watson test can be taken from existing tables. The differencing test and the Wu
test are only asymptotically distributed as y2. To investigate the finite sample
properties of these two large sample test statistics we simulate the differencing
and Wu tests under the null hypothesis that there is no specification error in the
simple regression model y,=fox,+u,. In all of these simulations Bo=1, 62=02,
so that the coefficient of determination is 0.50 and x, is generated as an AR(1).
The sample size is fixed at 30 observations and the autocorrelation coefficient
for x,, p,, is varied between 0 and 1. Each simulation is replicated 1000 times.?
Table 1 reports the summary statistics for these simulations.

Several things are noteworthy in Table I. First, the frequency distributions
of the differencing and Wu tests are quite close to the large sample x? distribution,
even for this relatively small sample size (T=30). In particular, the estimates of
the actual size of a 5 percent level test are quite close to .05. This seems to bold
approximately even in the case of p,=1 (i.e., the regressor follows a random
walk) which is not covered by Theorems | and 2. Since each experiment is an
independent drawing from a binomial distribution with a probability p of rejecting
the null hypothesis, the sample proportion of rejections is unbiased, E(p)=p,
and its variance is p(1 — p)/1000. For p=.05, the large sample standard error for
p 15 .007, so almost all of the rejection frequencies are within two standard errors
of .05. Second, the Wu test seems to have a x} distribution when p,=0, even
though the instrumental variable estimator BY¥ is inconsistent when p,=0. Based
on the results in Table 1, it seems reasonable to use the large sample y2 distribu-
tion of the differencing and Wu tests for samples as small as 30 observations.

4.2. Errors-in-Variables. To estimate the power of the differencing test
against the alternative hypothesis of errors-in-variables, consider the model of
equations (6) and (7). The noncentrality parameter for the Wu test can be

® The experiments were performed on the Hewlett-Packard 3000 computer at the University of
Rochester. All of the random variables were generated to have normal distributions using the
Box-Muiiller [1958] transformation of the uniform pseudo-random deviates which were generated
by HP3000. Tests on the independence and the normality of the generated data indicated no
problems.
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TABLE 1
SMALL SAMPLE (T -=30) DISTRIBUTIONS OF DIFFERENCING AND WU TESTS
UNDER THE NULL HYPOTHESIS

Difterencing Test, J Wu Test

Percent - Good_- Percent Good-
Mean Vari- .95 fractile ness-of- Mean Vari- .95 fractile ness-of-
ance of 2 Fit Test ance of »2 Fit Test
Theoretical 12 .
distribution 1.0 2.0 .050 — 1.0 2.0 .050 —
Simulation results
Autocorrelation
of xy, ps
0 1.078 2.100 .059 11.6 979 1.753 .045 73
3 1.080 2.211 .059 14.9 1.049 2211 .050 7.5
.5 1.031 1.977 .055 10.3 1.060 1.999 .055 10.4
7 1.022 1.943 059 4.8 1.112  2.341 .064 16.7
9 1.027 1915 .046 11.3 986 2.028 045 5.9
1.0 1.165 2.353 .072**  233* 1.076 1.960 .057 19.3*

NOTE: The Goodness-of-Fit test is based on the deciles of the theoretical 2 dis-
tribution, so the Goodness-of-Fit test should have a 22 distribution. Each simulation
is replicated 1000 times for a sample size of 30. The model is y,=8,x,+u,, where
3o=1and o2=02.

* Greater than the .95 fractile of the x3 distribution.
** More than two standard errors from .050.

shown to be half that for the differencing test, i.e., v=PB3p2c*4/(c202(1 — p?)).
Thus, we should generally expect the differencing test to outperform the Wu test.

The RESET test should also indicate misspecification in this case since errors-
in-variables can be viewed like the misspecification due to simultaneous equation
complications discussed by Ramsey [1969]. The Durbin-Watson test also has
the potential to detect misspecification due to measurement error since, as discussed
in Grether and Maddala [1973] and Plosser [1981], measurement error typically
produces autocorrelation in the estimated residuals even when the true disturbances
are serially uncorrelated.

The Monte Carlo experiments based on the measurement error model set
Bo=1, p,=0, and 62=1/(1-p2).1° The variance of the measurement error,
o, is set in two different ways: (a) the measurement error variance, o2, is set
equal to 10 or 50 percent of the variance of the true regressor z, which determines
the bias in the estimator of B, from the undifferenced regression, and (b) the
measurement error variance is set equal to 10 or 50 percent of the variance of the
true disturbance u, which determines the precision with which B, is estimated.
The noncentrality parameters for the differencing test and the Wu test indicate

% The true unobserved regressor z, is created to follow a first order autoregressive process,
z,=p,z,_;+a,, where a, is normal and independent.
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TABLE 2
ESTIMATED POWER FOR THE ERRORS-IN-VARIABLES MODEL
5 PERCENT LEVEL TESTS

T-30 T-100 7=200
. oilel oljfal 1 Wu d RESET T Wu d RESEF 1  Wu 4 RESET

060 048 .072 .053 .068 .063 .079 .054 085 .056 .070 045

N 1
3.5 .1 058 061 .064 .048 .064 .072 .084 .061 .102 064 .046 .056
1.5 081 .057 .074 .044 .112 .082 .082 .052 .164 .084 .052 .057
1 5 .08 .070 .059 .042 .166 .101 .099 .027 .287 .147 .074 .055
.1 b 076 .046 .069 .046 .115 .091 .079 .042 .165 .117 .050 .048
5 .5 .1 084 .074 070 .042 .132 .093 .072 .052 .224 130 .065 .053
. -5 .099 077 069 .046 217 .133 .063 .047 .433 230 .044 .045
S5 137 .095 054 .052 .367 .217 .090 .064 .675 .395 .099 .054
.1 -1 098 .076 .066 .053 .176 .126 .094 .055 .282 .190 .057 .056
7 .5 .1 112 068 .065 .065 .197 .142 .089 .051 .408 .253 .056 .060
A5 169 (103 052 .055 .497 288 .088 .045 .816 .534 .056 055
5.5 225 126 081 .042 672 415 .108 .054 .937 .734 .114 .048
11 124,093 077 049 374 243 065 .056 .644 .126 .047 .070
9 .5 .1 107 .082 .074 .049 312 206 .072 .063 .609 .424 .053 .0€8
A 5318 187 061 .051 .879 .659 .079 .088 .996 .948 .059 .080
S5 271 163 .090 .047 .870 .672 .171 .065 .995 .958 .200 .095

NOTE: The true model is: ¥o=Boz,+u,, where 3,=1, z, = 90,z,_, +e, and ¢2=].
There is independent measurement error in 2z, such that the observed value is x, = z, + v,.
The relative amount of measurement error in x, is determined by ¢i/s2. The model
which is estimated is: y,=8,x,+¢,, where &.=u,— B¢v,, hence the amount of measure-
ment error relative to the true regression disturbance is ai/o2. 4 is the test statistic based
on the differences regression, and Wu is the test statistic based on the instrumental vari-
ables regression using x,_, as the instrument. The Durbin-Watson statistic, d, tests for
residual autocorrelation. The rejection frequencies are based on the lower bound value
of the tabled distribution. RESET is the specification test due to Ramsey and is based
on adding y?, y° and y* to the estimated model. 7 is the number of observations used
to estimate the undifferenced regression. The power estimates are based on 1000 replica-
tions.

that the local power of both tests should increase with 62/c? and g2/o2.

Table 2 contains estimates of power for the differencing test, the Wu test, the
RESET test, and the Durbin-Watson test for different values of p., 0%[62, a2/a2,
and the sample size T. The differencing test and the Wu test statistics are assumed
to be distributed as y3. The RESET test statistic is distributed as F(3, T-5).
For the Durbin-Watson test statistic, d, the lower bound of the statistic is used to
compute the rejection frequency.!!

! The lower bound is a conservative procedure but is only used for T=30 and T=100. For
T=200, we use a normal approximation for 4 and the standard deviation of the sampling distri-
bution based on 500 replications under the nuil hypothesis.
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In virtually all cases, the differencing test rejects more frequently than any of the
other tests, and often the difference is quite substantial. The estimates of power
appear to increase with the autocorrelation of z, with the variance of the measure-
ment error, and with the sample size. Tt is interesting that for the range of
parameter values considered, neither the Durbin-Watson nor RESET tests appear
to have much power. The largest estimated rejection frequency for the Durbin-
Watson test is .20 and for the RESET test is .095. Based on these experiments,
it seems that the differencing test dominates the other tests for nonlocal alternatives
when the alternative hypothesis is measurement error in the regressor.

4.3. Omitted Variables To examine the power of the differencing test
against the hypothesis of an omitted variable, consider the model of equations
(9) and (10). For this case, the noncentrality parameter for the Wu test can be
shown to be

(15) V= ygzag(pxsz - pxz(+ 1))2/63(1 - pi)'

The relation between this expression and that for the differencing test is compli-
cated and there is no simple expression that indicates when one test is expected to
outperform the other.

The simulation experiments use equations (9) and (10) and set 8, =y,=1, 62=
o2, and the coefficient of determination for the true model is equal to .50. Hence,
the parameters that vary across experiments are the first-order autocorrelation
coefficient for x, p,, the cross-correlation coefficients between x, and z,,,, p,.(k),
for k=—1,0, +1, and the sample size, T.'? Table 3 presents the proportion
of rejections of the various tests using a 5 percent level of significance based on
1000 replications of each experiment.

The estimates of power for the differencing and Wu tests vary substantially for
different values of p,, and p,,(k), k=+1,0, —1 in Table 3. Neither the differ-
encing test nor the Wu test seems to be very powerful for the small samples, such
as T=30, but both tests have very high proportions of rejections for some alter-
native hypotheses when the sample size is moderate (T=100) to large (T=200).

As suggested by the noncentrality parameter, the differencing test is most power-
ful when [p,p,.(0)—(p,(— 1)+ p,.(+ 1))/2] is furthest from zero. Several things
should be noticed about this fact. First, the cross-correlation coefficients between
x and z at lead and lag 1 enter symmetrically in this test; that is, it is only the sum,
and not the pattern of these coefficients that matters. This explains why the
results for the differencing test are essentially the same for experiments II and
I11, and also for experiments IV, V, and VI. Second, the differencing test has

'? The regressor sequences are constructed as follows. First, the included regressor x, is cre-
ated to follow a first order-autoregressive process, x, = 0,x,., ~4a,, where a, is normal and inde-
pendent. Next, the excluded regressor z, is created by the following model, z, =w,x,-; +w,x, +
Wix,++b,, where b, is normal and independent. The coefficients w,, w;, and w; are func-
tions of the cross-correlation coefficients o,.(k), the autocorrelation of x,, p., and the relative
standard deviations of x, and z,.
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power equal to the size of the test in experiments IV, V, and VI when p =.5,
because plim (f, — f;)=0. Thus, it is necessary to consider the autocorrelation of
the included variable in comparison with the cross-correlations of the included
variable with the excluded variable to determine whether the differencing test has
power against a particular omitted variable.

As suggested by equation (15), the Wu test is most powerful when [p (+1)—
PxPx(0)] is furthest from zero. In this case, it is only the correlation between
z, and the instrumental variable x,_, that determines the power; the cross-corre-
lation between z, and x,, , does not matter. This explains why the results for the
Wu test are essentially the same for experiments, I, III, and VI, and also for
experiments I and IV in Table 3. The Wu test has power equal to the size of
the test when the cross-correlation function between x and z decays at the same
rate as the autocorrelation function for x; that is, when p,,(4+1)=p,p,.(0). This
occurs for one set of parameters in each of the experiments, except for experiment
V.

The comparison of the power estimates for the differencing and Wu tests in
Table 3 shows how different these tests are from one another. In virtually all
instances at least one of these tests rejects significantly more than 5 percent of
the time. Thus, in typical situations where the alternative hypothesis is not well-
specified in terms of the cross-correlations between the included variable and the
excluded variable, it may be worthwhile to compute both the differencing and the
Wu tests.  Since the tests are not independent, the size of the joint test is difficult
to determine precisely. Nevertheless, Bonferroni bounds are easy to apply.
To obtain a joint test of size less than or equal to a, set the nominal size of each
test individually at o/2.

Table 3 also indicates that for the range of parameters considered neither the
RESET test nor the Durbin-Watson test are very useful for detecting the omitted
variable. However, it is useful to recognize that the power of all the tests
reported in Table 3 can be increased by reducing ¢2 and thus increasing the
R? for the true model. In some limited experimentation we have found that by
raising the R? of the true model to above .90, we get rejection frequencies for the
RESET test that are comparable to those reported in Ramsey and Gilbert [1972].
Of course the estimated power of the differencing test and the Wu test also rises
substantially and remains significantly larger than that of the RESET and Durbin-
Watson tests.

5. CONCLUSION

This paper introduces and analyzes a simple specification test for linear time
series regression models. This test formalizes the procedure advocated by
Plosser and Schwert [1978] of comparing the least squares estimators from the un-
differenced and differenced forms of the model.

We show that specification errors that lead to regressors that are correlated with
the disturbances also lead to least squares estimators from the undifferenced and
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differenced forms of the model that have different probability limits. This suggests
that the differencing test will have power to detect such specification errors. We
examine in detail the asymptotic local power of the differencing test under the
alternative hypotheses of measurement error and omitted variables.

The small sample properties of the differencing test are investigated through
some Monte Carlo simulation experiments. Based on these experiments it
seems that the asymptotic properties of the differencing test are reasonably valid
for samples as small as 30 observations. Also, for the range of models investi-
gated, the differencing test performs well in comparison with an instrumental
variables specification test proposed by Wu [1973], the frequently employed
Durbin-Watson test and the RESET test proposed by Ramsey [1969] and Ramsey
and Schmidt [1976].

The differencing test developed in this paper is general in the sense that it is
designed to test against a broad class of alternative hypotheses. This is appro-
priate and desirable if the potential sources of specification error are unknown.
Thus, the differencing test can be viewed as a *‘diagnostic check” on the model
specification. This interpretation raises the question of what should be done if
the differencing test leads to a rejection of the maintained model specification.
One obvious strategy would be to perform some additional tests that are designed
to test against specific alternative hypotheses; for example, additional variables
could be added to the model or alternative functional forms could be estimated.!3
However, even if there are no obvious candidates for alternative model speci-
fications, the rejection of the specification using the differencing test should be a
clear warning not to proceed with inference or prediction as though the maintained
model specification was adequate.

Thus, it seems that the differencing test could have many fruitful applications
in situations where there is reason to think that the regression disturbance is not
orthogonal to the regressors. The test is both easy to apply and is likely to be
robust against a wide range of misspecifications commonly found in practical
situations.

University of Rochester,
University of Rochester,
University of California, San Diego.

MATHEMATICAL APPENDIX

All symbols and definitions are as given in the text. For convenience, we restate
the first assumption.

Al. The model can be written in mean-deviation form as

3 Of course, the usual pre-testing problems arise when a sequence of related tests are used to
arrive at an “‘adequate’” model specification.
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yt=X1/30+sn t= ],...,T;

where {X,} is a weakly stationary sequence of random 1 x k vectors such that plim
T-! 1 X X,=Myx=E(X,X,) is finite and nonsingular; {g} is a pure white
noise sequence such that E(e,)=0, E(s?)=062, 0<02< ;¢ is independent of X,
for all 7; and B, is an unknown finite k x | vector of constants.

To guarantee that \/T(B;—B,)4 N0, 62M3}), Al and the following assump-
tion are sufficient.

A2. There exist >0 and n<oo such that E|X,X,|'"**<n and Ele?|!*?<p
for i, j=1,..., k and all ¢, and
lim EIE(X,,HXJ,“IIXI, » X} = my; =0,

p->or

uniformly in 7, where m;;= E(X, X ;) for i, j=1,..., k.

Next, we introduce the T'x k instrument matrix Z with rows Z,, and impose the
following condition.

A3. {Z}is a weakly stationary sequence of random 1 x k vectors such that
plim T-' 3.1, Z;Z,= M, =E(Z,Z,) is finite and nonsmgular the sequence {Z,,
X,} is jointly weakly stationary such that plim T-1 Y71, Z; X, =M, =E(Z, X)) is
finite and nonsingular, and Z, is independent of ¢, for all .

A4. There exist 6>0 and n<co such that E|Z,Z,|'"*<n for i, j=1,..., k
and all ¢, and

lim ElE(ZisiZjerd Zsseo., Z)— 1yl = O,
uniformly in 7, where I;;=E(Z,Z,,), for i, j=1,..., k.

A3 and A4 are analogous to Al and A2. Note, however, that A4 is in terms of
the differences of the instruments, Z,. Conditions A1, A3 and A4 are sufficient
to ensure the asymptotic normality of B;. Specifically, JT(Br—Bo)A N,
o3MzEM 2 MZY).

To ensure the asymptotic normality of \/ 'T(Br— Br), which requires the joint
asymptotic normality of /T(ﬂr —Bo) and /1 T(Br—Bo), it is sufficient to assume
in addition to A1-A4:

AS5. There exist >0 and < co such that EIZ'i,+1Xj,|1+"<17 for i, j=1,..., k
and all ¢, and

31;12 E|E(Zjy s 1 Xjewel X1seos Xy Zy,. Z:+ )—K;;|=0,
uniformly in 7, where K;;=E(Z;,,X ;)= - E(Z,X,) for i, j=1,..., k.

With this structure, we can derive the properties of the differencing statistic 4
in a straightforward manner. Since Theorem 1 is actually a simple corollary of
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Theorem 2, we prove Theorem 2 first.

THEOREM 2. Given A1-A5, A A y? where

P=28% (ZX|T)"MZ'ZIT) X' Z|T)* = (X'X|T)™")
and
ér=(y - XBT)'(Y—XBT)/T,

provided plim V is nonsingular.

SKETCH OF PROOF: The desired result is obtained by deriving the asymptotic
distribution of

@) T(Br-Br) = JT(Z' X)'Z' — JT(X'X)"'X's

= (ZX/T)"! 7—‘;2 Zib ~ (X XITY T Xie,.

t=1

Since we may write

L I, _ -1 T, 1 ' ,
(a.2) \/_T tg Zi, = 7?"2 Zt+13t + 7T (Z7s18r— Zgy),

=]

consider the asymptotic distribution of
1 L ’ - ’ -1 v/
"VT ‘gl A (MZ}ZNP[ + Mx}X)e,,
where 1 is any real kx1 vector. The weakly stationary random variables
A(M3z4Z;, \+ M3zLX,)e, are easily shown to be elements of a sequence of martin-
gale differences.

Asymptotic normality then follows upon application of the appropriate
martingale central limit theorem. For the present case, corollary 6.1.1 of Serfling
[1968] is applicable given A1-AS. Thus,

1 T ’ -— ’ —1 !
—71?'; N(MzZi, + M3EX) e,
AN, o3A' (Mzx Mz, Mz} — Mx})J).
That /TA'(By—B;) has the identical asymptotic distribution follows from Rao
[1973] 2¢.4 (x.d) provided that
7 ] T 17 — ’ - ’
| VT (Br=Bn) + 7 3 4 (MZhZiw, + M3k Xe,|—200.
This is straightforward to verify given A1-AS, so that for any real A,
VTHV(Br—Br) A N, a1 (Mz4M M3y — Mzh)A).
It follows from Rao [1973] 2¢. 4(xi) that
VT(Br — BANQO, e¥Mz3M 4, MzY — Mz}).
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It then follows from White [1980] lemma 3.3 that
A=TBr - Br)y V-'(Br — B A rd,
provided that
V=6r(ZX|T) N (Z'ZIT)(X'Z|T)™* — (X'X|T)™Y)

is consistent for V=0{(M;#M,,Mz} —Mx3%), where V is nonsingular. This
follows easily given Al and A3 and the desired result follows. Q.E.D.

To prove Theorem 1, we simply replace Z, by X, in the preceding result. In
this situation, additional restrictions must be placed on the behavior of X,. The
most compact way to impose these restrictions is to assume

A6. A3-AS are satisfied for Z,= X,.

Obviously, for A3 to be satisfied, X, cannot contain lagged dependent variables.
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